38 Awg 36 Awg 32 Awg Nichrome 80 Alloy NiCr Heating Wire For Industrial **Heating Equipment**

Our Product Introduc

Product Description

Product Description:

Cr20Ni80 heating wire is a high-resistance alloy wire commonly used in industrial heating equipment. It is composed of elements such as chromium (Cr) and nickel (Ni) and has excellent resistance characteristics and high temperature stability.

In industrial heating equipment, Cr20Ni80 heating wire is widely used in various electric furnaces, hot blast furnaces, ovens and other heating elements. It can provide uniform and stable high-temperature heating effect to meet the heating needs in industrial production processes. Whether used to heat raw materials, heat air or heat the equipment itself, Cr20Ni80 heating wire can reliably provide the required high-temperature heating.

Basic performance:

Composition: Cr20Ni80 heating wire is composed of approximately 20% chromium (Cr) and 80% nickel (Ni) by weight. This alloy composition provides good electrical resistance and high-temperature stability.

Basic Information

• Place of Origin: China • Brand Name: Victory

• Certification: CE,ROHS,ISO 9001

Model Number: Cr20Ni80 • Minimum Order Quantity: 5 Kg • Price: Negotiable

 Packaging Details: Spool package with Carton box, Coil

package with polybag for Resistance wire

Delivery Time:

. Payment Terms: L/C, T/T, Western Union, MoneyGram

. Supply Ability: 300 tons per month

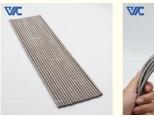
Product Specification

Name: NiCr Heating Wire Material: Nickel, Chromium

Nickel(Min): 80%

Resistivity: $1.09\text{-}1.13~\mu\Omega\text{-}m$ Operating Temperature: 1100-1200 °C Density: 8.2 G/cm³ • Coefficient Of Linear 13-15×10^-6/°C Expansion:

700-900 Mpa • Tensile Strength: Yield Strength: 300-600 Mpa • Elongation: 20-30%


Application: Industrial Electric Stoves, Hot Blast Stoves,

• Highlight: Nichrome 80 Alloy NiCr Heating Wire,

38 Awg Nichrome Wire, 36 Awg Nichrome Wire

More Images

Resistivity: The resistivity of Cr20Ni80 heating wire is typically around 1.09-1.13 $\mu\Omega$ ·m. This property determines the wire's electrical resistance and its ability to generate heat when an electric current passes through it.

Maximum Operating Temperature: Cr20Ni80 heating wire has a high melting point and can withstand temperatures up to approximately 1100-1200 degrees Celsius (2012-2192 degrees Fahrenheit). It is suitable for applications requiring high-temperature heating.

Density: The density of Cr20Ni80 heating wire is approximately 8.4 g/cm³.

Coefficient of Linear Expansion: The wire has a coefficient of linear expansion of about 13-15×10^-6/°C, which means it expands or contracts slightly when subjected to temperature changes.

Mechanical Strength: Cr20Ni80 heating wire has good mechanical strength, including tensile strength and yield strength. The tensile strength is typically in the range of 700-900 megapascals (MPa), and the yield strength is around 300-600 MPa. These properties allow the wire to withstand mechanical stress during operation.

Elongation: The elongation of Cr20Ni80 heating wire is typically around 20-30%, indicating its ability to stretch slightly without breaking.

Technical Parameters:


Performance material Cr10Ni90 Cr20Ni80 Cr30Ni70 Cr15Ni60 Cr20Ni35 Ni 90 Rest Rest 55.0 61.0 34.0 37.0 Composición Cr 10 20.0 23.0 28.0 31.0 15.0 18.0 18.0 21.0 Fe ≤1.0 ≤1.0 Rest Rest Temperatura máxima°C 1300 1200 1250 1150 1100	
Composición Cr 10 20.0 23.0 28.0 31.0 15.0 18.0 18.0 21.0 Fe ≤1.0 ≤1.0 Rest Rest	
Fe ≤1.0 ≤1.0 Rest Rest	
Temperatura máxima°C 1300 1200 1250 1150 1100	
Punto de fusion °C 1400 1400 1380 1390 1390	
Densidad g/cm3 8.7 8.4 8.1 8.2 7.9	
Resistividad μΩ·m,20°C 0.76±0.05 1.09±0.05 1.18±0.05 1.12±0.05 1.00±0.05	
Alargamiento a la ruptura ≥20 ≥20 ≥20 ≥20 ≥20	
Calor especifico J/g.°C 0.44 0.461 0.494 0.5	
Conductividad térmica KJ/m.h°C 60.3 45.2 45.2 43.8	
Coeficiente de expansión de líneas a×10-6/(20 1000°C) 18 17 17 19	
Estructura micrográfica Austenite Austenite Austenite Austenite	
Propiedades magnéticas Nonmagnetic Nonmagneti c Nonmagnetic Weak magnetic	

Form	Specification	
Wire	Diameter=0.025mm~8mm	
Flat wire	Width=0.40~6.0mm	Thick=0.03~0.50mm
Strip	width=8~250mm	Thick=0.05~3.0mm
Bar	Diameter=8~100mm	Long=50~1000

Service:

We provide comprehensive nickel-chromium alloy technical support and services to ensure the normal operation of our customers' products. Our experienced technical team will provide customers with various services such as installation, maintenance, troubleshooting, and answer any questions they may have about the product. We also provide customized solutions, designing and manufacturing nickel-chromium alloy products according to customer needs.

contact us email:victory@dlx-alloy.com

Oem service:

Welcome customized size

We are experience factory for OEM&ODM service

Main feature:

High resistance characteristics: Cr20Ni80 heating wire has a high resistivity and can provide a large resistance value, making it suitable for scenarios requiring high-power heating.

High-temperature stability: This heating wire can maintain excellent stability in high-temperature environments, with a maximum operating temperature of up to 1200°C, adapting to various high-temperature heating needs. Fast heating response: Due to its high resistance characteristics, Cr20Ni80 heating wire can heat up quickly, providing fast and efficient heating effect.

Oxidation resistance: Under high temperature conditions, it can form a dense oxide protective film, effectively preventing further oxidation reactions and extending service life.

Application:

Industrial electric furnace: Cr20Ni80 heating wire is used as the heating element of electric furnace for heating metal materials, glass, ceramics and other objects. It can provide uniform high-temperature heating to ensure the heating needs in industrial production.

Hot air stove: Cr20Ni80 heating wire is often used in the heating device of hot air stoves to generate hot air for drying, sintering, drying and other processes in industrial production. It heats up quickly and provides stable hot air output.

Oven: Cr20Ni80 heating wire is used in industrial ovens for heating operations such as baking, roasting, and drying. It provides uniform heating, ensuring the quality of cooking and handling of food or other objects. Heating tube: Cr20Ni80 heating wire is often made into heating tubes, which are used in industrial equipment such as liquid heating, steam generators, and heat exchangers. It can heat up quickly and conduct heat to meet heating requirements.

Smelting furnace: Cr20Ni80 heating wire is used as the heating element of industrial smelting furnaces for melting metal, glass and other materials. It can provide high-temperature and stable heating effects to meet the needs of the smelting process.

All in all, Cr20Ni80 heating wire is widely used in various heating applications such as electric furnaces, industrial heaters, heating elements in appliances, and other high-temperature heating systems. It offers good electrical resistance, high-temperature stability, and mechanical durability, making it suitable for demanding heating environments. Please note that specific parameters may vary depending on the manufacturer and product specifications, so it is always recommended to consult the supplier or refer to their technical data sheets for precise information.

Changzhou Victory Technology Co., Ltd

+8619906119641

victory@dlx-alloy.com

e victory-alloy.com

NO.32 West Taihu Road, Xinbei District, Changzhou, Jiangsu