# 24 30 32 36 42 AWG Nichrome 60 Alloy Cr15Ni60 Electric Resistance Wire For Heating Elements

## **Basic Information**

Place of Origin: China
Brand Name: Victory
Certification: ISO
Model Number: Ni60Cr15
Minimum Order Quantity: 3 KGS

Price: 3 - 500 kgs \$22-\$30
Packaging Details: Wooden Case
Delivery Time: 21-36 working days
Payment Terms: L/C, T/T, D/A
Supply Ability: 10 Tons Per Month



# **Product Specification**

Material: Nickel, Chromium

• Surface: Bright/Acid White/Oxidized

Density: 8.20 G/cm3
Resistivity: 1.12±0.05
Elongation At Rupture: ≥20%
Max Working Temperature: 1150°C
Melting Point: 1390°C
Thermal Conductivity KJ/m.h °C:

Magnetic Properities: NonmagneticMOQ: 2-5KGS

Lead Time: 15-35 Days After Order Confirm

Highlight: Heating Elements Nichrome 60 Alloy Wire,

Cr15Ni60 Nichrome 60 Alloy Wire, 42 AWG Nichrome 60 Alloy Wire



# More Images



## **Product Description**

#### 24 30 32 36 42 AWG Nichrome 60 Alloy Cr15Ni60 Electric Resistance Wire For Heating Elements

Cr15Ni60 is a type of Nichrome alloy wire. Nichrome is a family of nickel-chromium-based alloys that are commonly used in various heating and sensing applications.

#### Specifically, the Cr15Ni60 Nichrome alloy wire has the following key characteristics:

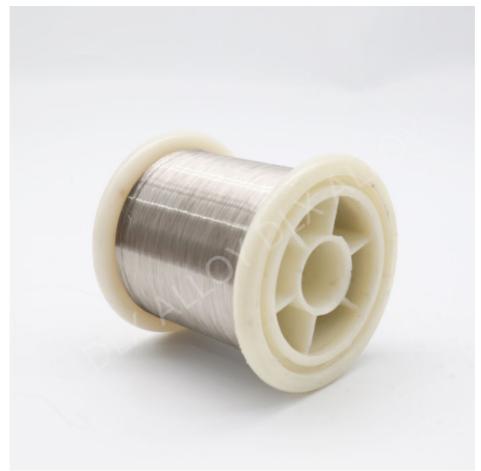
#### Composition:

Chromium (Cr): Approximately 15% Nickel (Ni): Approximately 60%

Iron (Fe): Remaining balance, typically around 25%

Other minor alloying elements may be present in small amounts.

#### Properties Of Cr15Ni60 Nichrome Alloy Wire:


- 1. Electrical Resistivity: The Cr15Ni60 Nichrome alloy has a relatively high electrical resistivity, typically in the range of 1.00-1.10 ohm-mm²/m. This makes it suitable for use in heating and sensing applications where a high-resistance material is required.
- 2. Oxidation Resistance: The chromium content provides good oxidation resistance, allowing the Nichrome wire to operate at high temperatures without significant degradation.
- 3. High-Temperature Strength: The combination of chromium and nickel provides the alloy with excellent high-temperature strength and creep resistance, making it suitable for use in applications where sustained exposure to high temperatures is required.
- 4. Corrosion Resistance: The nickel content contributes to the alloy's corrosion resistance, making it suitable for use in environments with moderate to high corrosive conditions.
- 5. Ductility: The nickel-rich composition of the alloy provides a good balance of ductility and strength, allowing the Nichrome wire to be formed and shaped as needed.

### Applications Of Cr15Ni60 Nichrome Alloy Wire:

- 1. Heating elements for electric furnaces, ovens, and other high-temperature equipment
- 2. Sensing elements for temperature measurement, such as in thermocouples and resistance temperature detectors (RTDs)
- 3. Heating components in industrial and domestic appliances
- 4. Resistor elements in electronic circuits and devices
- 5. Catalytic converters in automotive exhaust systems

The Cr15Ni60 Nichrome alloy wire is a versatile and widely used material in industries where high-temperature, corrosion-resistant, and high-resistance heating or sensing applications are required.

| Performance material                                     |    | Cr10Ni90  | Cr20Ni80      | Cr30Ni70        | Cr15Ni60        | Cr20Ni35         | Cr20Ni30         |  |
|----------------------------------------------------------|----|-----------|---------------|-----------------|-----------------|------------------|------------------|--|
| Composic<br>ión                                          | Ni | 90        | Rest          | Rest            | 55.0 61.0       | 34.0 37.0        | 30.0 34.0        |  |
|                                                          | Cr | 10        | 20.0 23.0     | 28.0 31.0       | 15.0 18.0       | 18.0 21.0        | 18.0 21.0        |  |
|                                                          | Fe |           | ≤1.0          | ≤1.0            | Rest            | Rest             | Rest             |  |
| Max. temperature( °C )                                   |    | 1300      | 1200          | 1250            | 1150            | 1100             | 1100             |  |
| Melting Point °C                                         |    | 1400      | 1400          | 1380            | 1390            | 1390             | 1390             |  |
| Density(g/cm3)                                           |    | 8.7       | 8.4           | 8.1             | 8.2             | 7.9              | 7.9              |  |
| Resistivity at<br>20ºC(μΩ@m)                             |    | 0.76±0.05 | 1.09±0.0<br>5 | 1.18±0.0<br>5   | 1.12±0.05       | 1.00±0.05        | 1.04±0.05        |  |
| Elongation at rupture(%)                                 |    | ≥20       | ≥20           | ≥20             | ≥20             | ≥20              | ≥20              |  |
| Specific Heat J/g.°C                                     |    |           | 0.44          | 0.461           | 0.494           | 0.5              | 0.5              |  |
| Thermal conductivity<br>KJ/m.h°C                         |    |           | 60.3          | 45.2            | 45.2            | 43.8             | 43.8             |  |
| Coefficient of lines<br>expansion a×10-<br>6/(20 1000°C) |    |           | 18            | 17              | 17              | 19               | 19               |  |
| Micrographic structure                                   |    |           | Austenite     | Austenite       | Austenite       | Austenite        | Austenite        |  |
| Magnetic properties                                      |    |           |               | Nonmagn<br>etic | Nonmagn<br>etic | Weak<br>magnetic | Weak<br>magnetic |  |





NO.32 West Taihu Road, Xinbei District, Changzhou, Jiangsu